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Chapter 1  Introduction 

 As the speed of transistors has risen in recent years, acquiring accurate models for the 

passive devices used in integrated circuits has become a greater challenge. Current device speeds 

are in the tens of GHz, and at these frequencies the parasitic effects of inductors can become 

difficult to predict. At GHz level frequencies, monolithic inductors suffer from severe parasitic 

effects. The relatively large size of the inductor (hundreds of microns), and the high dielectric 

constant of the substrate, cause the inductor to experience significant capacitive coupling. The 

skin effect, along with the fields coupling into a lossy substrate, causes the structures to dissipate 

a significant amount of power. Additionally, the effect of eddy currents must be understood as 

they too result in power loss. These parasitic effects result in a limited peak Q. Since many RF 

circuits such as LNA’s and VCO’s require inductors with a high Q, it is critical for the circuit 

designer to accurately model these parasitics. 

 At present, the best way to model the parasitic effects of a monolithic inductor is to apply 

data fitting techniques to a lumped circuit model, or to use a numerical EM solver. Data fitting 

techniques require the inductor to be fabricated multiple times which is both time consuming and 

expensive. EM solvers such as FEM, MoM, and FDTD can be both time consuming and 

numerically unstable when simulating electrically small structures (inductors are much smaller 

than λ/20). Although new schemes have been developed to handle electrically small structures, 

numerical techniques are still time consuming.  

 There are techniques in the literature, such as in [17] that use microstrip transmission line 

approximations to develop general expressions for the inductance and Q of spiral inductors. 

Other techniques, like that of [1], [6], [8], [15], and [16], involve the development of 

approximated empirical or semi-analytical formulas. Unfortunately, as mentioned by [11], these 

formulas can sometimes give results with an error on the order of 20%. 

 In this report, we begin in Chapter 2 with a summary of the Partial Element Equivalent 

Circuit (PEEC) distributed circuit model for a spiral inductor. Chapter 3 will deal with the 

derivation of the frequency dependent resistance model that accounts for skin effect and eddy 

currents. In Chapter 4, we review the approximations made to simplify the Partial Element 

Equivalent Circuit (PEEC) model into a simple lumped pi-model. In Chapter 5, we will see that 

the lumped model can be evaluated fairly quickly and, as will be demonstrated, with great 

accuracy. We will summarize our results in Chapter 6.  
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Chapter 2 Summary of the PEEC Distributed Circuit 

 The PEEC technique has been thoroughly developed by [4] as a tool by which Maxwell’s 

equations are used to construct a distributed circuit to model interconnects in digital and 

microwave circuits. As the construction of the PEEC distributed circuit for inductors is discussed 

in great detail in [1], [4] - [6], and [9], it is only briefly summarized here, with reference to [11]. 

A flowchart showing the progression from Maxwell’s equations (with a quasistatic 

approximation) to a distributed model is given in Figure 1. 

 

Figure 1 - Flowchart showing the Distributed Model Derivation 
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2.1 Review of EM Equations  

Using Faraday’s law in point form for the time periodic case concurrently with the 

constitutive relations for linear isotropic materials, one can arrive at the following expression for 

the electric field. 

 E j Aω φ= − −∇
vv

    (2.1) 

Taking the divergence of both sides of equation (2.1) and applying the Lorenz gauge to the result 

will give 

 2 2 ρφ ω μεφ
ε
−

∇ + =    (2.2) 

where φ is the scalar electric potential.  

 In a similar manner beginning from Ampere’s law, we arrive at the magnetic equivalent 

to equation (2.2) 

 2 2A A Jω με μ∇ + = −
v v v

,   (2.3) 

where A
v

 is the vector magnetic potential. Since the devices we are studying are electrically very 

small, we can apply a quasi-static ( 0ω ≈ ) assumption to equation (2.2) and equation (2.3) which 

gives  

 2 ρφ
ε

∇ = −    (2.4) 

 2 A Jμ∇ = −
v v

   (2.5) 

Equation (2.5) is based upon the assumption that the substrate has very low loss. If we want to 

take into account losses in the substrate, we can use 0
s

s r s j σε ε ε
ω

= −  in equation (2.3) to get 

(within the substrate) 

2 2 2
0 0 0

s
rs sA j A A j A Jσω μ ε ε ωσ μ μ

ω
⎛ ⎞∇ + − ∇ − = −⎜ ⎟
⎝ ⎠

v v v v v
� ,  (2.6) 

 where the 2ω  term is ignored because we are using a quasi-static approximation. The solution to 

equation  (2.5) and equation (2.6), with the appropriate boundary conditions, is expressed in 

terms of the magnetostatic (Gm) Green’s function.  

 mv
A G Jdv= ∫
v v

   (2.7) 
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The solution for Gm for the lossless case (equation (2.5) ) is simple because it does not involve 

the permittivity. Since the permeability of each layer of our substrate is the same as free space, 

Gm is simply the free space Green’s function without the e-jBR term, namely, 

0( )
4mG R

R
μ
π

= ,  (2.8) 

where R is the distance between the observation and source points. The solution to equation (2.6) 

(lossy case) is more involved and requires the application of appropriate boundary conditions to 

solve for a multi-layer Gm. That case will not be considered in this report. The solution to 

equation (2.4), with the appropriate boundary conditions, can be expressed in terms of the 

electrostatic (Ge) Green’s function, 

 ev
G dvφ ρ= ∫ .   (2.9) 

 As mentioned previously, the inductors we are studying are electrically very small, 

making the use of static Green’s functions appropriate. Following the method outlined in [5] and 

[10], Ge for the multi-layer substrate shown in Figure 2 is solved directly. The details of the 

derivation of the multilayer Green’s function ( , ')eG r rr r  are given in Appendix A. 

 
METAL 3 

METAL 2 

METAL 1 

OXIDE 

SILICON BULK 

GROUND PLANE 

ˆ 0n E• =
v

ˆ 0n E• =
v

ˆ 0n E• =
v

ˆ 0n E× =
v

 

Figure 2 - Profile of multi-layer substrate 

 
As will be discussed, equation (2.7) and equation (2.9) form the foundation for the system of 

equations that will be used to construct the PEEC distributed circuit.  
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2.2 Discretizing the Inductor  

 In general, the current and charge on a structure can be discretized any arbitrary way. In 

other words, the charge and current can be expressed in terms of a set of basis functions that is 

most appropriate for the geometry. However, for simplicity, as done in [11]-[13], the monolithic 

inductors are discretized into a set of series rectangles as illustrated in Figure 3. The coordinate 

system we use is shown in Figure 4.  

 

Figure 3 - Discretization for 1.5 turn inductor 
 

Port 1

Port 2

X
Y

Z

Substrate Layer 1

Free Space

Substrate Layer 2

Substrate Layer 3

Z

Z=0

Z=h1

Z=h2

Z=h3

a) b)  

Figure 4 - Coordinate system used: (a) top view and (b) side view of substrate  
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 The current and charge is then decomposed into a summation of pulse basis functions as 

done in [11]-[13]. The volume current density is given as 

 
ˆ( , , )i i i

i
i

I b x y z JJ
a

=
v

,   (2.10) 

where b(x,y,z)i is a pulse function with a magnitude of 1 when the point (x,y,z) is inside rectangle 

i and is equal to zero; otherwise, ˆ
iJ  is a unit vector that gives the direction of current flow and is 

always perpendicular to the cross-section into which it flows, whose area is denoted by ai. Ii is a 

constant and represents the magnitude of the current. Similarly, the volume charge density in 

each segment is given as 

 
( , , )i i

i
i

Q b x y z
v

ρ =    (2.11) 

where b(x,y,z)i is the same as in equation (2.10), vi is the volume of rectangle i, and Qi is a 

constant that represents the total charge in the volume vi. The total current and charge in the 

inductor is a summation of the individual basis functions. This gives the total current and charge 

density as  

 
1

N

i
i

J J
=

=∑
v v

   (2.12) 

 
1

N

i
i

ρ ρ
=

=∑    (2.13) 

  

2.3 Formulation of the PEEC System of Equations 

 It is now possible to construct the PEEC distributed circuit with the equations we have 

derived up to this point. Plugging equation (2.7) into equation (2.1) and putting all terms to the 

right side will give 

 0 mv
E j G Jdvω φ= + +∇∫
v v

.   (2.14) 

We can replace J
v

 in equation (2.14) with equation (2.10) and equation (2.12) to arrive at 
  

 
1

ˆ0 ( , , )
N

j
m j jv

j j

I
E j G b x y z J dv

a
ω φ

=

= + +∇∑ ∫
v

.   (2.15) 

  



ASCSII-2 contract #F33615-00-D-1726-0002 CDRL #A001 Final Report 
 

 
Approved for public release; distribution is unlimited. 

7 

By defining the testing function to be the same as the basis function from equation (2.10), we can 

apply Galerkin’s method and take the inner product of both sides of equation (2.15) with the 

testing function to arrive at  

( )
1

ˆ ˆˆ ˆ0
i i j i

N
ji i i i

m i j j j iv v v v
ji i j i

IE J dv Jj G J J dv dv dv
a a a a

φω
=

∇
= + +∑∫ ∫ ∫ ∫

v
� �

� . (2.16) 

 From the boundary condition on a good conductor, it can be shown that the first term on 

the right side of equation (2.16) represents the resistance (1/σ) of the inductor. 

ˆ .i
i

J
E J

σ
• =   (2.17) 

We call the double integral in the second term of equation (2.16) Mij, the partial inductance 

matrix, namely, 

( )1 ˆ ˆ
i j

ij m i j j iv v
i j

M G J J dv dv
a a

= •∫ ∫ ,  (2.18) 

where Gm was defined in equation (2.8). Plugging equation (2.8) into equation (2.18), we get 

 0
ˆ ˆ

4 i i j j

i j
ij i ja l a l

i j i j

dl dl
M da da

a a r r
μ
π

•
=

−∫ ∫ ∫ ∫ v v .   (2.19) 

The analytical solution to equation (2.19) can be very complicated. The techniques outlined in 

[2], [6], [7], and summarized in Appendix C, offer approximate solutions to equation (2.19) that 

give reasonable accuracy.  

 Finally, a finite difference approximation can be applied to the third term of equation  

(2.16) and simplify the equation to  

 
1

10 .
i

N

S i i j ij iv
ji

R J dv j I M V
a

ω
=

= + −Δ∑∫    (2.20) 

By definition, iVΔ  is the change in voltage from one end of rectangle i to the other end. As in 

[11]-[13], we define iVΔ  as 

( , , ) ( , , )i i i i i i iV x y z x y zφ φ+ + + − − −Δ = − ,   (2.21) 

where ( , , )i i ix y zφ + + +  denotes the potential at the boundary between rectangle i and rectangle i-1. 

Similarly, ( , , )i i ix y zφ − − −  denotes the potential at the boundary between rectangle i and rectangle 

i+1. Expressing equation (2.20) in matrix form gives  
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 [ ] [ ] [ ]( )[ ].V R j M IωΔ = +    (2.22) 

 Whereas the system of equations expressed in equation (2.22) is based on equation (2.1) 

and equation (2.7), a second system of equations is generated from equation (2.9) and equation 

(2.23), the continuity equation.  

 J jωρ∇• = − .   (2.23) 

Similar to the application of Galerkin’s method used in arriving at equation (2.16), we obtain 

equation (2.24). 

1

1 .
i i j

N
j

i i i e j iv v v
ji i j

Q
V dv G dv dv

v v v
φ

=

= =∑∫ ∫ ∫   (2.24) 

Here, Vi is defined as the average potential on rectangle i. If we assume that the potential 

decreases linearly along the length of the rectangle, then Vi is approximately the potential at the 

center of the rectangle.  

 In using this technique for an N rectangle structure, there are two variables that are not 

assigned to rectangles, namely V0 and VN+1. However, the input and output ports of the inductor 

are located at the input boundary of rectangle 1 and the output boundary of rectangle N 

respectively. Therefore, V0 and VN+1 can be assigned to the applied port voltage sources.  

 Qj is the total charge present on rectangle j and can be found by integrating the charge 

density over the volume of rectangle j. 

j
j jv

Q dvρ= ∫   (2.25) 

By solving equation (2.23) for ρ and inserting the result into equation (2.25), substituting the 

current J  with a summation of pulse basis functions, we get  

( ) ( )
1

ˆ , ,1 .
j

N i i i
j jv

i i

I J b x y z
Q dv

j aω =

∇•
= ∑∫   (2.26) 

The divergence is taken on the volume current density in rectangle j. The result is a derivative 

with respect to the direction in which current is flowing. Again, a finite difference approximation 

can be made giving 

j
j

I
Q

jω
Δ

=   (2.27) 
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 Here ΔIj is the difference between currents at the input and output boundaries of rectangle 

j. Current at the boundaries is assumed to be the average of the two rectangles sharing this 

boundary. Here we let 0 1I I=  and 1N NI I+ = . By substituting (2.27) into (2.24), we obtain  

1

1 .
i j

N
j

i e i jv v
j i j

I
V G dv dv

j v vω =

Δ
= ∑ ∫ ∫   (2.28) 

Writing equation (2.28) in matrix form gives  

[ ] [ ][ ]1 .V P I
jω

= Δ   (2.29) 

Here, [P] is the well-known coefficient of potential matrix whose elements are 

1 .
i j

ij e j iv v
i j

p G dv dv
v v

= ∫ ∫     (2.30) 

Calculate equation (2.30) using a discrete cosine transform, a technique outlined in [5] and [9] 

and summarized in Appendix B. Solving equation (2.29) for [ΔI] gives the matrix equation,  

[ ] [ ] [ ]1 [ ][ ].I j P V j C Vω ω−Δ = =   (2.31) 

2.4 Creating the Distributed Circuit from the System of Equations 

 Equations (2.22) and (2.31) are in the form of Kirchoff’s voltage law (KVL) and 

Kirchoff’s current law (KCL), respectively. From (2.31) we construct the circuit shown in Figure 

5 using KCL with some algebraic manipulation as in [11]-[13] so that the topology of the circuit 

agrees with the properties of the capacitance matrix outlined in [14]. The capacitance of 

rectangle i to ground Cii can be written as 

1

N

ii ij
j

C c
=

=∑   (2.32) 

where cij are the individual terms of the [C] matrix for an N rectangle system.  

 

Figure 5 - Equivalent KCL for three series rectangles 
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Also, the direct capacitance between two rectangles i and j can be written as 

ij ijC c= − .  (2.33) 

This leads us to construct the circuit so that the current to ground from rectangle i is written as 

jωCiiVi and the current from rectangle i to j is written as jωCij(Vi-Vj). An equivalent circuit of 

Figure 5 is re-drawn with capacitors in Figure 6.  

 

Figure 6 - Equivalent KCL with capacitors 
 
 To complete the derivation of the PEEC distributed circuit, we use equation (2.22) to 

model the ohmic loss and magnetic coupling within the metal of the inductor. Utilizing the KVL 

form of equation (2.22), the circuit in Figure 7 is developed.  

 

 

Figure 7 - KVL circuit for one rectangle 
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 We combine the circuit of Figure 7, which represents the magnetic coupling and power 

loss in the conductor, with the circuit of Figure 6, which models the electrostatic coupling 

between different conductive segments and between the conductor and ground. The resulting 

distributed model is formed in Figure 8.  

 

Cs1 RS1

R1 M11

-C12

-R12

Cs2 RS2

R2 M22

-C23

-R23

-C13

-R13

Cs3 RS3

R3 M33

Cox1 Cox2 Cox3

 

Figure 8 - PEEC distributed circuit for three series rectangles 
 
 The capacitors in Figure 4 are complex. This is related to the fact that Ge is complex and 

accounts for loss in the substrate. As a result, each partial capacitance is represented by an ideal 

capacitor in parallel with a resistor. The ideal capacitance is simply the real part of the partial 

capacitance. The parallel resistance is simply given by  

( )( )
1 .ij

ij

R
imag Cω

−
=   (2.34) 

From [5] we know that the imaginary part of Cij is approximately inversely proportional to 

frequency, which tells us that Rij is approximately constant with respect to frequency. The terms 

Rij above are not to be confused with the terms of [R], which is discussed in Chapter 3 and deals 

with the frequency dependent resistance.  

 The application of the distributed model to the inductor is simple. It is observed in Figure 

3 that the rectangles comprising the inductor are in series from port 1 to port 2, allowing us to 

add the distributed models in series. Thus, for an inductor of twelve rectangles, we would have 

four of the circuits from Figure 8 in series.  
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Chapter 3 Calculating the Resistance Matrix 

 In Chapter 2, the current distribution is assumed to be uniform inside the volume of the 

rectangle. However, the current will be non-uniform due to the skin effect and, in the case of the 

spiral inductor, eddy currents. While a uniform current approximation is reasonably adequate for 

the calculation of the partial inductance and partial capacitance matrices, it is not adequate to 

calculate the resistance matrix. 

3.1  Eddy Currents in a Spiral Inductor 

 We begin with a discussion of the derivation of [R]. The resistance matrix, [R], is a 

diagonal matrix whose elements represent two important effects: the amount of power dissipated 

in each rectangle due to skin effect and eddy currents, as well as the effects due to the internal 

inductance of each rectangle. To calculate the total power dissipated in each rectangle, the total 

current in each rectangle is first calculated. As an approximation, the total current in a rectangle 

is expressed as a sum of an excitation current and an eddy current. The excitation current is 

uniform across the length and width of the rectangle. The eddy current describes how the current 

is disturbed by the presence of a magnetic field. 

 tot ex eddyJ J J= +
v v v

   (3.1) 

Applying equation (3.1) to the case of uniform excitation current and an eddy current density that 

is linear in x results in the illustration of Figure 9. The (+) sign indicates current is flowing into 

the paper and a (-) sign indicates current is flowing out of the paper.  

 

x

z
excJ
v

+
+ +++

x

z
eddyJ
v

+ +--
≈

x

z
totJ
v

+ ++
+

W/2-W/2 W/2-W/2 W/2-W/2
 

Figure 9 - Cross-section of a trace illustrating the total current distribution 
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The coordinate system for a rectangle is illustrated by Figure 10. The origin is located at 

the center of the rectangle. 

 

Figure 10 - Coordinate system for the top view of a rectangle 
 

The author in [8] gives the relationship between eddy current density and the z-

component of the magnetic flux, using Maxwell’s equations, as  

 
0

ˆ ( ') '
x

eddy y zJ E j y B x dxσ ωσ= = ∫
v v

   (3.2) 

Note that the x-component of the eddy current is neglected since the length of the rectangle is 

assumed to be much larger than the width. A reasonable approximation in (3.2) is to assume that 

Bz is constant, then eddyJ
v

 is linear in x. A more accurate formulation would be to allow eddyJ
v

 to 

vary as xα , where α is a constant, determined empirically, that is dependent on the technology 

being used. This allows equation (3.2) to be re-written in a more general form as 

 ˆ.eddy zJ j B x yαωσ=
v

   (3.3) 

 The author in [8] uses an empirical approximation for Bz. However, the magnetic flux 

acting on a given rectangle can be approximated using the partial inductance matrix found from 

equation (2.18). The total flux acting on rectangle i is  

 
1

.
N

i ij j
j

M Iψ
=

=∑    (3.4) 

By assuming uniform flux distribution over the area of rectangle i, the magnitude of the magnetic 

flux density can be approximated as  

 1 .

N

ij j
j

zi
i i

M I
B

W l
=≈
∑

   (3.5) 
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The components of the partial inductance matrix that will contribute to the ẑ component of B, 

Mzi, can be determined by the right hand rule. Orthogonal rectangles have zero mutual 

inductance. We neglect the self-inductance term, because the magnetic field generated by 

rectangle i will have a zero average z component inside its volume. From [11], a general 

expression for Mzi is given as 

 ( )
1,

1 in
N

zi in
n n i

M Mα

= ≠

= −∑ ,   (3.6) 

where αin is determined by the orientation of rectangle i relative to rectangle n and is equal to 

zero or one. Our expression for Bz on rectangle i is 

zi ex
zi

i i

M IB
W l

= .  (3.7) 

3.2 The Skin Effect 

 In general, a conductor with a rectangular cross section will have current crowding at all 

of the surfaces as illustrated by Figure 11. The current crowding at high frequencies is due to the 

internal inductance being higher in the center of the conductor as a result of the internal magnetic 

field being largest at the center. The current tends to flow through the path of least impedance, 

which is the path of least inductance at high frequencies.  

 

Figure 11 - Cross-section of current distribution 

 
 An exact calculation, in terms of number of skin depths Δ (1≤ Δ ≤2) of the thickness that 

the current in the conductor penetrates is not a trivial task and its result will vary from 

technology to technology, depending greatly on the dielectric properties of the multilayer 

substrate being used. Using Δ as a variable for the number of skin depths the current takes up, the 

volume current density in the rectangle can be expressed as  

 ( ) ( ) ˆ, , , .
iz z

J x y z J x y e yδ
−

= Δ∗    (3.8) 
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Here, zi, is the distance from the top of the substrate to rectangle i. z is equal to zero at the top of 

the substrate and is negative inside the substrate. Integrating equation (3.8) over the thickness of 

the conductor gives  

( ) ( )ˆ, , , .i

i

tt z

z
J x y z dz yJ x y e δδ δ

−
−

−

⎛ ⎞
= Δ∗ −⎜ ⎟

⎝ ⎠
∫   (3.9) 

The effective thickness, teff, is then defined as  

 1 .
t

efft e δδ
−⎛ ⎞

= Δ∗ −⎜ ⎟
⎝ ⎠

   (3.10) 

As we will see, teff plays a critical role in determining the frequency dependent resistance and 

therefore the peak Q of the device. This allows Δ to be treated as a degree of freedom that will be 

determined empirically for each technology. Using Q obtained by another EM solver or from 

measured data as a benchmark, Δ is adjusted so that the peak Q obtained by this model matches 

that of the EM solver or measured data. For the technology used in this model, a value of Δ = 1.1 

is used.  

3.3 Calculating the Frequency Dependent Resistance 

 The total power dissipated in the rectangle can be expressed in terms of the total volume 

current density in the rectangle. 

 
21

2diss totv
P J dv

σ
= ∫    (3.11) 

We first substitute equation (3.7) into equation (3.3) for Bz, plugging that result into equation 

(3.1) and equation (3.11). Equation (3.11) is then integrated which gives the total power 

dissipated as  

2 1 2 1
2

2 2 1 2 2
eff i i i

diss ex i

t l W WKP J W
α α

σ α

+ +⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= + − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
.  (3.12) 

The variable K is defined as 

 

2
zi eff

i

M t
K

l
ωσ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.  (3.13) 

The effective resistance of the rectangle relates the amount of power dissipated in the rectangle 

to the amount of current applied to the rectangle.  
  



ASCSII-2 contract #F33615-00-D-1726-0002 CDRL #A001 Final Report 
 

 
Approved for public release; distribution is unlimited. 

16 

 

( )
2 2

2 2

cross

diss diss
eff

ex
ex crossS

P PR
I J dS

= =
•∫

   (3.14) 

 

Evaluating the integral gives  
 

 2

2

ˆi

i

Wt z

W ex ex effz
J ydxdz J Wt

−

−−
• =∫ ∫    (3.15) 

 

The result of equation (3.15) and equation (3.12) is then combined into equation (3.14), which 

results in Reff,ind for a given rectangle i of an inductor being   

 
2 1 2 1

, 2 2 1 2 2
i i i

eff ind i
i eff

l W WKR W
W t

α α

σ α

+ +⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= + − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
. (3.16) 

 As with teff, α is also determined empirically by the comparison of Q between this model 

and another reliable benchmark. The procedure for determining α is to start off with α = 1. The 

value for teff is varied first, as its value will affect Q the most. The value for teff will always be 

between one and two. If adjusting teff does not give a correct value for peak Q, teff will be set to 

the value that gives the best Q. Next, the value for α, is adjusted. Its value should not be too far 

from 1, as the linear approximation for the eddy current distribution is fairly accurate. For this 

model, the linear approximation for the eddy current distribution, α = 1, is used. 

 The rectangles of the inductor will experience an internal inductance because of the 

magnetic flux internal to the conductor. Paul [3] gives the per-unit-length internal inductance of 

a circular wire as 

  int 2
8

o

w

L
r

μδ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (3.17) 

for high frequencies (rw>> δ) and  

 int

8
oL μ
π

=    (3.18) 

for low frequencies (rw<<δ). Here, rw is the radius of the wire. 2δ is recognized as the effective 

thickness of the wire. As the conductor is rectangular, it is unknown what should be substituted 

into rw. However, if we assume that at DC, the per-unit-length internal inductance should be 
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equation (3.18), then it is reasonable to approximate the per-unit-length internal inductance for 

all frequencies as 

  int 0 ,
8

efft
L

t
μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (3.19) 

 

 

 

because at low frequencies, teff is approximately equal to t. The total reactance of the rectangle 

can be calculated as  

 int
effX L lω= .   (3.20) 

Chapter 4  Deriving the Inductor Lumped Pi-Model 

 The techniques of Chapters 2 can be used to construct a PEEC distributed model for any 

planar monolithic inductor. Shown in Figure 12 is a flowchart outlining the progression from 

Maxwell’s equations to an inductor lumped pi-model. 

  

 

Figure 12 - Inductor lumped pi-model derivation flowchart 
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 In this chapter, we describe a method to simplify the distributed model down to a lumped 

pi-model for a spiral inductor. A lumped pi-model makes it easy for the designer to visualize the 

parasitics inherent to the spiral inductor. The inductor lumped pi-model we use is commonly 

used for integrated inductors and is shown in Figure 13. The loss in the substrate due to the 

electrostatic coupling between metal and ground is captured by Rs1 and Rs2. The capacitance 

caused by this electrostatic coupling through the substrate is captured by Cs1 and Cs2. The 

capacitive coupling due to the lossless oxide is represented by Cox1 and Cox2. The lumped model 

used by [11]-[13] does not account for this oxide capacitance separately from Cs1, Rs1, Cs2, and 

Rs2. By taking into account the effect due to Cox1 and Cox2 separately from the rest of the 

substrate admittance, we are able to accurately model the device at lower frequencies. If Cox1 and 

Cox2 are absent, we effectively have a low impedance to ground through Rs1 and Rs2 at low 

frequencies, which if physically not accurate since the lossless oxide would make the impedance 

very large.  

 As mentioned in Chapter 1, there are approximate empirical and semi-analytical methods 

([1], [6], [8], [15], [16]) used to calculate the component values of the lumped pi-model. As 

illustrated in the flowchart in Figure 12, we use two low frequency approximations to the 

distributed model similar to that of [11]-[13] to calculate Rs, L, Cs1,2 and Rs1,2. We use a high 

frequency approximation that uses the overlap capacitance of the inductor bridge to approximate 

a value for C0 and R0.  

 

Figure 13 - Inductor lumped pi-model 
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4.1 First Low Frequency Approximation 

 The first low frequency approximation involves recognizing that at low frequencies, the 

complex capacitors are approximately open circuits. By applying this approximation to the 

PEEC circuit of Figure 8, the circuit of Figure 14 results.  

 

R1 M11 R2 M22 R3 M33

M12 M23

M13

I I

 

Figure 14 - Distributed circuit following a low frequency approximation 
 
For a circuit with N series rectangles, it is easily observed that the total series impedance of this 

circuit is  

 
1 1 1

N N N

series i ij
i i j

Z R s M
= = =

= +∑ ∑∑    (4.1) 

The form of equation (4.1) is  

 series sZ R sL= +    (4.2) 

which is the same form as the branch of the pi-model shown in Figure 15.  

 

RS L
 

Figure 15 - Pi-circuit neglecting capacitances 

 
 
Thus the components of Figure 14 can be found as 

 
1

N

s i
i

R R
=

= ∑    (4.3) 

  
1 1

N N

ij
i j

L M
= =

= ∑∑      (4.4) 
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4.2 Second Low Frequency Approximation 

 The second low frequency approximation does not neglect all of the capacitors. Because 

the impedance of an inductor is much smaller than the impedance of a capacitor at low 

frequencies, the complex capacitances in parallel with a series RL combination are neglected. All 

of the complex capacitances connected to ground remain. When this approximation is applied to 

the PEEC circuit of Figure 8, the result is the circuit of Figure 16. The currents through each of 

the rectangles of the inductor are assumed to be approximately equal because of the negligible 

current in the substrate. This allows us to lump the mutual inductances with the self-inductances. 

 

C's1

R1 L1 R2 L2 R3 L3Port 1 Port 2

ΔI1≈0 ΔI3≈0Cox1

C's2

Cox2 ΔI2≈0

C's3

Cox3

 

Figure 16 - PEEC circuit after second low frequency approximation 
 
 

 
1

N

i ij
j

L M
=

=∑    (4.5) 

 The next step is to short port 2 and calculate the input admittance Y11. We ignore terms 

with s to the power of three or greater since we are using a low frequency approximation. This 

gives 

1 1 2 2 3 3
11 2 3

1 1 2 2 3 3

1ox s ox s ox s

ox s ox s ox s series

C C C C C CY s
C C C C C C Z

α α
⎛ ⎞′ ′ ′

≈ + + +⎜ ⎟′ ′ ′+ + +⎝ ⎠
  (4.6) 

where Zseries is found from equation (4.1) and  

 

N N

j j
j i j i

i
series

s L s L

Z L
α = == ≈

∑ ∑
   (4.7) 
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if we assume i isL R>>  as in [11] to make the substrate impedance independent of frequency. 

The form of equation (4.6) matches the form for the input admittance looking into the circuit of 

Figure 17. 

RS L

C'sub1

Y11
Cox,p1

Y'S1

 

Figure 17 - Low frequency pi-circuit with port 2 shorted 

 11 1
1

s
s

Y sY
R sL

′= +
+

   (4.8) 

Equating equation (4.6) to equation (4.8) for N rectangles gives the substrate admittance 1sY ′ . 

Since s=jω and keeping in mind that siC′  is complex,  

( ){ } ( ){ }
( ){ } ( ){ }

1 1 1
1 1

1 1

Re Im

Re Im

N N
oxi si

s i si i s s
i i oxi si

s s

C CY Y j Y j j Y
C C

j Y Y

α α ω ω

ω ω

= =

′
′ ′ ′ ′= = = + ∗

′+

′ ′= −

∑ ∑ % %

% %
  (4.9) 

where 1sY ′  is the total complex admittance to ground at port 1 as illustrated in Figure 17. siY ′ is the 

total complex capacitance to ground of rectangle i and is found from the capacitance matrix as  

 
1

N

si ij
j

Y c
=

′ = ∑ ,   (4.10) 

where cij represents the individual terms of [C].  

 In a manner similar to [15] and [16], we use a parallel plate approximation for the oxide 

capacitance. This gives the oxide capacitance in terms of the area, thickness, and permittivity of 

rectangle i as 

 ox
oxi i

ox

C A
t
ε

= ,   (4.11) 

where Ai is the surface area (neglecting thickness) of rectangle i. We make the assumption that 

the oxide capacitance is equal at both ports; therefore, we can take the sum of the oxide 

capacitance due to all the rectangles and divide it by two to calculate the oxide capacitance at 

port 1 and port 2.  
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 , 1 , 2
1

1
2

N

ox p ox p oxi
i

C C C
=

= = ∑    (4.12) 

 We can express 1sY ′  as the series combination of the admittances due to 1subC′  and , 1ox pC , 

which are defined in Figure 17. 
2 2

, 1 ,1 ,1 1 , 1 ,1 , 1 ,1
1 2 2 2 2

,1 , 1 ,1 ,1 , 1 ,1

( )
( ) ( )

ox p R R ox ox p I ox p I
s

R ox p I R ox p I

C C C C C C C C
Y j

C C C C C C
ω ω
⎧ ⎫ ⎧ ⎫+ +⎪ ⎪ ⎪ ⎪′ = −⎨ ⎬ ⎨ ⎬+ + + +⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (4.13) 

 where { },1 1ImI subC C′=  and { },1 1ReR subC C′= . Equating the real and imaginary parts of equation 

(4.9) with the real and imaginary parts of equation (4.13) gives us two equations to solve for the 

two unknowns, CI,1 and CR,1. From CI,1 and CR,1 we use the complex capacitance technique to 

extract the component values, Csub1 and Rsub1.  

 1 ,1sub RC C=    (4.14) 

 1
,1

1
sub

I

R
Cω

= −    (4.15) 

This technique will work for any ω > 0. A similar procedure is applied to find the component 

values at port 2.  

( ){ } ( ){ }
( ){ } ( ){ }

2 2 2
1 1

2 2

Re Im

Re Im

N N
oxi si

s i si i s s
i i oxi si

s s

C CY Y j Y j j Y
C C

j Y Y

β β ω ω

ω ω

= =

′
′ ′ ′ ′= = = + ∗

′+

′ ′= −

∑ ∑ % %

% %
  (4.16) 

 1

i

j
j

i

L

L
β ==

∑
   (4.17) 

 2 ,2sub RC C=    (4.18) 

 2
,2

1
sub

I

R
Cω

= −    (4.19) 

4.3  High Frequency Approximation 

 For an accurate calculation of the self-resonant frequency, the most important component 

of the equivalent pi-model apart from the inductance is the interwinding capacitance 0C′ , the 

parallel combination of Ro and Co in Figure 13. While the frequency dependent resistance plays 

an important role in determining the value of the peak Q of the inductor, the interwinding 
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capacitance determines when the inductor Q becomes zero and the inductor behaves as a 

capacitor rather than an inductor. We replace the complete distributed model for three 

consecutive rectangles with the simplified version shown in Figure 18 for 4 rectangles, where the 

inductors are treated as open circuits. Note we also replace the admittances to ground from each 

rectangle with the lumped values at the ports found with the second low frequency 

approximation. 

 

Figure 18 - High frequency approximation for four series rectangles 
 
 Our method is based on a common technique used in other analytical pi-models, such as 

[15] and [16], which use the overlap capacitance of the bridge, illustrated in Figure 19, to 

determine the interwinding capacitance.  

 

Figure 19 - Illustration of bridge overlap capacitance – 2.5 turn inductor 
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 The methods in [15] and [16] use a parallel plate approximation, whereas we use the [C] 

matrix, which is more accurate in that it accounts for fringing. In order to justify the method of 

using the overlap capacitance to determine the total interwinding capacitance, we must show that 

the portion of the inductor that overlaps the bridge is close to the port 1 voltage and that the 

bridge is close to the port 2 voltage at resonance. Once this is accomplished, we can ignore all of 

the turn-to-turn interwinding capacitances because most of the turns are at the same potential and 

the overlap capacitance will dominate. After inspecting the voltage along the inductor for various 

geometries by solving the above equations, we consistently find that the voltage along the first 

half of the inductor rectangles remained fairly constant and that most of the voltage drop 

occurred along the inner-most turns of the inductor after the last overlap of the bridge. The plot 

of the voltage along the inductor at resonance is shown below for a 1.5 turn and 3.5 turn inductor 

in Figure 20 and Figure 21, respectively, and it shows that the overlap rectangles are close to the 

same voltage as port 1. Similar results were found for other N-turn inductors.  

 

Figure 20 - Inductor voltage vs. Inductor rectangle for 1.5 turn inductor 

 

Figure 21 - Inductor voltage vs. Inductor rectangle for 3.5 turn inductor 
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 As a result of these findings, we can express the total interwinding capacitance as the 

parallel combination of each bridge overlap capacitance. A general expression for the 

discretization scheme shown in Figure 3 and used in this model is given as  

 { }
9

0
6
8

( , ) ( 1, )
i

step

C c i c i
γ

γ γ
−

=

′ = + +∑    (4.20) 

 8 3Nγ = +    (4.21) 

 ( , ) ( , )c i j C i j= −    (4.22) 

with N being the number of turns of the inductor.  

 We use the complex capacitance technique to extract the real capacitance and resistance 

values from the complex capacitance. 

 0 0( )C real C′=    (4.23) 

 0
0

1
( ( ))

R
imag Cω

= −
′

   (4.24) 

 

Chapter 5 Comparison with Momentum and Measured Data 

5.1  Inductor Results 

 A set of five spiral inductors was designed, with the 1.5 turn design being done by Idstein 

[11], with turns varying from 1.5 to 5.5 turns as described by Table 1. The substrate used is 

based on a 0.18 um FDSOI CMOS technology, a process utilizing a high resistivity (2000 Ω-

cm.) bulk silicon substrate. A description of the layer stack and its properties is given in Tables 2 

and 3. 

Table 1 - Inductor geometry summary 
Inductor 

# 

Inductance 

(nH) 

Number of 

turns 

Outer diameter 

(um) 

Trace width 

(um) 

Trace spacing 

(um) 

1 1 1.5 248 28 4 

2 2.5 2.5 248 14 4 

3 1.6 3.5 146 10 4 

4 3 4.5 190 10 5 

5 4.9 5.5 210 10 4 
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Material Thickness (um) Dielectric Constant Conductivity (S/m) 

Oxide 7.75 4 0 

Silicon 675 11.7 0.5 

Table 2 - Substrate dielectric properties 

 

Metal Layer Thickness (um) 

Distance from 

metal center to 

top(um) 

Conductivity 

(S/m) 

Metal 1 .6 6.15 2.08E+07 

Metal 2 .6 4.55 2.08E+07 

Metal 3 2 1.75 2.64E+07 

Table 3 - Substrate metal properties 

 

 Using the concepts discussed in this report, the component values of the lumped pi-circuit 

of Figure 13 were calculated. The lumped pi-circuit was then simulated using the Agilent ADS 

schematic tool. The ADS schematic showing the pi-circuit and its component values for inductor 

#1 is given in Figure 22. The box in the middle of the schematic titled “SNP1” contain the 2-port 

S-parameters of the frequency dependent impedance. The 2-port S-Parameters were computed 

from 100 MHz to the first resonant frequency of each inductor. The inductors were also 

simulated using ADS RF Momentum, which is a Method of Moments (MoM) EM simulator. 

Measured data was obtained for inductor #1, the 1.5 turn spiral. The layout of the test structure is 

illustrated by Figure 23. The pads are arranged in a ground-signal-ground configuration and 2-

port S-Parameter measurements from 1-20 GHz were performed using on-chip cascade probes.  
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Figure 22 - ADS schematic for inductor #1 
 

 
(a) 

 
(b) 

Figure 23 - 1.5 turn inductor (a) and open (b) test structure 
 
 The measured data was de-embedded by subtracting the Y-Parameters (Y11 + Y12, Y22 + 

Y12) of the de-embed open (Figure 23b) from the measured Y-Parameters. This effectively 
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removes the parasitic pad capacitance from the measurements. For the other inductors, the 2-port 

S-Parameters generated from the Momentum simulation were used as the benchmark to compare 

our model to.  

 The differential impedance, which describes the series impedance connecting ports 1 and 

2, is defined using the Z-Parameters of the 2-port inductor.  

 11 22 12 21diffZ Z Z Z Z= + − −    (5.1) 

Using the differential impedance, the effective inductance of the inductor can be computed at 

frequency f as 

 
( )

.
2

diff
eff

imag Z
L

fπ
=    (5.2)  

The inductor Q can also be computed using the differential impedance as  

 
( )
( )

.diff

diff

imag Z
Q

real Z
=    (5.3) 

 The values for Q and Leff, as well as the 2-port S-Parameters generated by Momentum 

and our model were then compared. Again, we were able to compare to measured data for 

inductor #1. As can be seen from Figure 24 – Figure 28, reasonable agreement between 

Momentum and our model is achieved. Additionally, our model agrees well with the de-

embedded measured data in predicting the frequency and value of the peak Q, as well as 

accurately modeling effective inductance and S-parameters, as can be seen in Figure 29. 
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Figure 24 - Simulated results inductor #1 
 

 

 

Figure 25 - Simulated results inductor #2 
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Figure 26 - Simulated results inductor #3 

 

  

  

Figure 27 - Simulated results inductor #4 



ASCSII-2 contract #F33615-00-D-1726-0002 CDRL #A001 Final Report 
 

 
Approved for public release; distribution is unlimited. 

31 

  

  

Figure 28 - Simulated results inductor #5 

 
 

  

  

Figure 29 - De-embedded measured results for inductor #1 
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 The biggest discrepancy observed is in the prediction of Q at higher frequencies. It is 

typical for Q to vary slightly from one model to the next, as the methods of capturing the ohmic 

loss in the metal are usually different. The most important aspect of Q is the magnitude and 

frequency of its maximum, since this is typically in the frequency range that the device will be 

used. In comparing our model with Momentum, the peak Q is reasonably close, and the peak Q 

frequencies are nearly identical which leads to a high degree of confidence in both models. Slight 

deviations in the effective inductance values are most likely due to approximations made in the 

modeling of internal inductance. The slight over-estimation in the resonant frequency is most 

likely due to the method in determining the interwinding capacitance, which neglects some of the 

turn-to-turn capacitances and relies only on the bridge overlap capacitance for its value.  

Chapter 6  Summary and Conclusions 

 In this report, the technique proposed in [11]-[13] for modeling spiral inductors with a 

simple lumped pi-circuit was improved upon. In addition, the bandwidth of this model goes up to 

the first resonant frequency, a significant improvement in the bandwidth achieved previously.  

 As in [11]-[13], the PEEC technique was used to construct the distributed circuit, upon 

which the lumped pi-circuits were based. A low frequency approximation similar to that in [11]-

[13] was applied to the distributed circuit to arrive at values for the substrate impedance and 

series impedance of the inductor. The method in this work differs slightly in that it accounts for 

the lossless oxide capacitance. At higher frequencies, a different method was used to determine 

the interwinding capacitance. This method has also been used in [15] and [16], but we justify its 

application by inspecting the voltage along the inductor near resonance. As previously 

mentioned, the interwinding capacitance must be calculated accurately in order to correctly 

predict the resonant frequency.  

 In calculating the partial capacitance matrix, [11]-[13] used numerical integration which 

proved to be very time-consuming. A method employing FFTs as discussed by [5] was used in 

this work to speed up the calculation of [C].  

 As demonstrated in Chapter 5, good agreement in Q, Leff, and 2-port S-parameters up to 

the first resonance is obtained with the inductor model presented in this work and ADS RF 

Momentum. We also verify the accuracy of the model by comparing to the de-embedded 

measurements for a 1.5 turn 1 nH inductor.  
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 A big improvement that could be made to this model would be to account for eddy 

current losses in the substrate when calculating the partial inductance matrix [M]. To accomplish 

this, a multi-layer Gm would need to be calculated, as mentioned in Chapter 2. The technique 

outlined in [19], using image theory, could be used as a guideline for calculating Gm. One 

potential problem with using a Gm that accounts for loss is that the matrix [M] will become 

frequency dependent, which leads to a somewhat more complicated model.  

 Another improvement to the inductor model would be to allow for more general 

geometries, such as octagonal spirals or circular spirals. As the shape of a spiral inductor 

approaches circular, the efficiency in terms of inductance per-unit-area increases, leading to 

more efficient use of real-estate in the integrated circuit design. The only change that needs to be 

done is to modify the existing computer program (MATLAB). 

 The model discussed in this report is based on rigorously derived equations that are true 

to the physics of the device. The S-parameter data generated in the ADS schematic can be 

incorporated into other circuit simulators such as Cadence and used in the design of complex 

integrated circuits such as LNAs, matching networks, LC tanks for oscillators, etc. Since this 

model can be run in a very short period of time, the design cycle time can be greatly reduced 

compared to the time involved with other numerical EM solvers. 
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Appendix A: A General Approach to Solving the Electrostatic Green’s Function for a 

Multilayered Substrate 

 

Figure 30 - Profile of L-layered substrate 
 
 With reference to [5], [10], and [18], we consider the derivation of the multilayer 

electrostatic Green’s function, Ge, for the L-layered structure in Figure 30. The dimensions of the 

structure shown in Figure 30 are a in the x-direction and b in the y-direction. ( );eG r r′  is found 

by inverting Poisson’s equation and gives the potential at the observation point r due to a point 

charge source placed at a point r′ . In our case, all metal layers are in the top layer, which means 

both the source and observation points will be in the top layer. However, for generality we will 

perform the derivation assuming the source location can be in any layer.  

 Poisson’s equation in equation (A.1) can be written in the Green’s function form of 

equation (A.2). 

 2 ρφ
ε

∇ = −    (A.1) 

 ( )2 ( ) ( ) ( );e
i

x x y y z zG r r δ δ δ
ε

′ ′ ′− − −′∇ = − ,   (A.2) 



ASCSII-2 contract #F33615-00-D-1726-0002 CDRL #A001 Final Report 
 

 
Approved for public release; distribution is unlimited. 

36 

where the subscript i indicates the source layer. The form of Ge is  

 ( ) ( ) ( ); ; ;eG X x x Y y y Z z z′ ′ ′ ′= .   (A.3) 

We substitute X, Y, and Z ′ into equation (A.2) which gives 
2 2 2

2 2 2

( ) ( ) ( )

i

d d d x x y y z zYZ X Z X Y XY Z
dx dy dz

δ δ δ
ε

′ ′ ′− − −′ ′ ′+ + = −  (A.4) 

The boundary condition on the side-walls of the structure in Figure 30 is ˆ 0n E• =
v

. To satisfy 

this, we let cos mX x
a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
 and cos nY y

b
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
. Plugging in the functions for X and Y we re-

write equation (A.4) as 
2 22

1 1
2

0 0
cos cos

( ) ( ) ( )

m n

i

m nm n dx y Z Z
a b dz a b

x x y y z z

π ππ π

δ δ δ
ε

∞ ∞

= =

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ′ ′× − + =⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
′ ′ ′− − −

−

∑∑
 (A.5) 

We multiply both sides by cos cosm nx y
a b
π π⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and integrate both sides over x and y from 0 

to a and 0 to b, respectively, and this gives 

2 22
1 1

2

( ) cos cos
4 i

m nab d z z m nZ Z x y
dz a b a b

π π δ π π
ε

⎧ ⎫⎡ ⎤ ′−⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′− + = −⎢ ⎥⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (A.6) 

We substitute ( ; ) cos cosmn
m nZ Z z z x y
a b
π π⎛ ⎞ ⎛ ⎞′ ′ ′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 into equation (A.6) to simplify to  

 
2

2
2

( )( ; )
4 mn mn

i

ab d z zt Z z z
dz

δ
ε

′⎛ ⎞ −′− = −⎜ ⎟
⎝ ⎠

   (A.7) 

where 
2 2

2
mn

m nt
a b
π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. From equation (A.7) we can solve for ( );mnZ z z′ using the method 

of solving a one-dimensional Green’s functions outlined in [18]. The method is summarized 

below. 

 A solution to equation (A.7) has the form  

( ; ) mn mnt z t z
mn k kZ z z C e D e−′ = +      (A.8) 

in layer k. A recursive relation is obtained between the coefficients in adjacent layers using the 

boundary conditions. At the boundary between each interface, the voltage and n̂ D×
v

 is 
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continuous. In addition, the voltage at the bottom is zero due to the ground plane. At the top, we 

have zero normal E
v

 field due to the magnetic wall condition. This recursive relation can be 

represented by a matrix [A]. 

1

1

[ ]k k

k k

C C
A

D D
+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
     (A.9) 

where [A] can be found from the boundary conditions as 

[ ]

2

1 1

2

1 1

1 11 1
2 2

1 11 1
2 2

mn k

mn k

t dk k

k k

t dk k

k k

e
A

e

ε ε
ε ε

ε ε
ε ε

−

+ +

+ +

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥− +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.   (A.10) 

Next, we introduce the self-adjoint operator L.  

 ( ) ( )d dL p z q x
dz dx

⎡ ⎤= −⎢ ⎥⎣ ⎦
   (A.11) 

We want a Green’s function that satisfies an equation of the form 

 [ ( )] ( ; ) ( )mnL w z Z z z z zλ δ′ ′+ = − −    (A.12) 

together with the boundary conditions 

 , , ,( ) ( ; ) ( ; ) 0a b mn a b mn z a bp z Z z z Z z zα β =′ ′ ′+ = ,   (A.13) 

where L is the self-adjoint operator of equation (A.11). The solution to equation (A.12) is divided 

into two intervals. 

 

( ) ( )

( ; )
( ) ( )mn

U z T z z z
CZ z z

U z T z z z
C

′⎧ ′≤⎪⎪′ = ⎨ ′⎪ ′≥
⎪⎩

   (A.14) 

where C is a constant and U and T are two independent solutions of 

 
( )

[ ( )] 0
( )

U z
L w z

T z
λ+ =    (A.15) 

with 

 
( ) ( ) ( ) 0

( ) ( ) ( ) 0
a a z a

b b z b

p z U z U z

p z T z T z

α β

α β
=

=

′ + =

′ + =
    (A.16) 

and 
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 ( )[ ( ) ( ) ( ) ( )]C p z T z U z T z U z′ ′ ′ ′ ′ ′ ′= − .   (A.17) 

Equation (A.16) is necessary to ensure that equation (A.13) is satisfied. To use this method for 

equation (A.7), we re-write it as 

 
2

2
2 ( ; ) ( )i

mn mn
mn

ab d t Z z z z z
dz

ε δ
⎛ ⎞

′ ′− = − −⎜ ⎟Δ ⎝ ⎠
   (A.18) 

where  

 

4 , 0
2 ( 0, 0) ( 0, 0)
1 0

mn

m n
m n or m n

m n

≠⎧
⎪Δ = = ≠ ≠ =⎨
⎪ = =⎩

.   (A.19) 

 To put equation (A.18) into the same form as equation (A.12), we recognize that ( ) i

mn

abp z ε
=
Δ

, 

( ) 1w z = , ( ) 0q z = , and 2
mntλ = − . In addition, 0aα = , 1aβ = , 0bβ = , and mn

b
iab

α
ε

Δ
= to satisfy 

the boundary conditions of equation (A.16).  

 We proceed with solving for T(z) and ( )U z′  for z z′≥ . Using equation (A.8) in matrix 

form, we solve for T(z) as 

 ( ) [ ]mn mn kt z t z

k

C
T z e e

D
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   (A.20) 

where k i≥ . We can find kC  and kD  using the boundary condition at z = dL in conjunction with 

the recursive relation, applied from the top down towards the kth layer. From the boundary 

condition at dL we find  

 2 mn Lt d
L LD C e= .   (A.21) 

We can set DL to 1 since it will drop out in a ratio with D1 later on. This allows us to find k

k

C
D
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

as 

1 1 1 1
1 2 1 2

1
[ ] [ ] ...[ ] [ ]

mn L

k
k k L L Lt d

k

C
A A A A C

D e
− − − −

+ − −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
   (A.22) 

We plug the result for equation (A.22) into equation (A.20) to find ( )T z . Next we need to find 

( )U z′ for z z′≥ .  
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 ( ) mn mn

l
t z t z i

l
i

C
U z e e

D
′ ′− ⎡ ⎤

⎡ ⎤′ = ⎢ ⎥⎣ ⎦
⎣ ⎦

   (A.23) 

 The superscript l in the coefficients C and D indicates that the source location z′  is below 

the observation point z . The coefficients l
iC  and l

iD  for ( )U z′  are found in a manner similar to 

how the coefficients Ck and Dk were found for ( )T z  except we start from the bottom and apply 

the recursive relation towards the top. From the boundary condition at 0z =  where we have a 

ground plane, we can relate the coefficients C1 and D1 by plugging z = 0 into equation (A.8) and 

setting ( )0; 0mnZ z′ = . From this we get 

 1 1C D= −    (A.24) 

We can set D1 = 1 for the same reason we can set DL = 1 previously. This gives us  

 1 2 1 1

1
[ ][ ]...[ ]

1

l
i

i il
i

C
A A A C

D − −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

.   (A.25) 

The values for the coefficients found in equation (A.25) are then plugged into equation (A.23). 

 Up to this point, half of the solution to equation (A.14) has been found. The next step is 

to solve for ( )T z′  and ( )U z  for the case z z′≤ . For this case, layer k ≤  layer i. ( )U z  is found as 

 ( ) mn mn kt z t z

k

C
U z e e

D
− ⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦

⎣ ⎦
.   (A.26) 

The coefficients Ck and Dk are found using the recursive relation applied from the bottom layer 

to the kth layer, with the aid of the boundary condition ( )0; 0mnZ z′ = .  

 1 2 2 1 1

1
[ ][ ]...[ ][ ]

1
k

k k
k

C
A A A A C

D − −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

   (A.27) 

Again, we plug the result of equation (A.27) into equation (A.26). ( )T z′  is found for z z′≤ as 

 ( ) mn mn

u
t z t z i

u
i

C
T z e e

D
′ ′− ⎡ ⎤

⎡ ⎤′ = ⎢ ⎥⎣ ⎦
⎣ ⎦

   (A.28) 

The superscript u in the coefficients C and D indicates that the source location z′  is above the 

observation point z . The coefficients u
iC  and u

iD  are found by applying the recursive relation 

with [A], starting again from the z = dL, in conjunction with the boundary condition at z = dL and 

working downwards towards layer i. This gives 
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1 1 1 1
1 2 1 2

1
[ ] [ ] ...[ ] [ ]

mn L

u
i

i i L L Lt du
i

C
A A A A C

eD
− − − −

+ − −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
.   (A.29) 

Again, we plug the result of equation (A.29) into equation (A.28).  

 An expression for C in equation (A.14) is found using equation (A.18). However, the 

expression found for C would be broke into two intervals, one for z z′≤ and one for z z′≥ . We 

introduce a variable C% , as well as coefficients C< , D< ,C> , and D> to allow us to write ( ; )mnZ z z′  

in one expression.  

1( ; ) ( ; )mn mn mn mnt z t z t z t z
mn e

C C
Z z z e e e e G z z

D DC
< < > >< >− −

< >

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦%
  (A.30) 

where z<  clearly means the use of z if z z′< and the use of z′  if z z′> . We also have 

 
,
,

k
l
i

C k i z z
C

C k i z z<

′≤ ≤⎧
= ⎨ ′≥ ≥⎩

   (A.31) 

 
,
,

k
l
i

D k i z z
D

D k i z z<

′≤ ≤⎧
= ⎨ ′≥ ≥⎩

   (A.32) 

 
,
,

k
u
i

C k i z z
C

C k i z z>

′≥ ≥⎧
= ⎨ ′≤ ≤⎩

   (A.33) 

 
,
,

k
u
i

D k i z z
D

D k i z z>

′≥ ≥⎧
= ⎨ ′≤ ≤⎩

.   (A.34) 

The variable C% is defined as 

[ ] 1 1
1 2 2 1 1

1 1
2 1 2

0 12 1 1 [ ] [ ] ...[ ] [ ] [ ] [ ] ...
1 0

1
[ ] [ ]

mn L

T T T Ti
mn i i i i

mn

L L t d

abC t A A A A A A

A A
e

ε − −
− − +

− −
− −

⎡ ⎤
= − ⎢ ⎥−Δ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

%

 (A.35) 

 We tested this method by applying it to the substrate under consideration in this report. 

For this, we set i=j=2 and L=2 since we have a two-layer substrate with both metal layers 

(source and observation points) in the top layer. Without getting into the details, we find 

( ; )mnZ z z′  as follows. For z z′≤ , 

2
2 2

2
2 2

( )( )( ; ) 2 ( )

mn mn mn mn L mn

mn L

t z t z t z t d t zl l

mn
t dl li

mn
mn

C e D e e e eZ z z ab t C e Dε

′ ′− −+ +′ =
−

Δ

.   (A.36) 
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Equation (A.36) matches the result found in [10] found for the case z z′≤ . For z z′≥ , 
2

2 2

2
2 2

( )( )( ; ) 2 ( )

mn mn mn mn L mn

mn L

t z t z t z t d t zl l

mn
t dl li

mn
mn

C e D e e e eZ z z ab t C e Dε

′ ′− −+ +′ =
−

Δ

.   (A.37) 

This also matches the result found in [10] for the case z z′≥ .  

 The above derivation works for all values of m and n except for m = n = 0. We will study 

that case in detail in Appendix B.  
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Appendix B: Fast Computation of the Coefficient of Potential Matrix 

 The following summary of the method for obtaining the coefficient of potential matrix is 

done with reference to [5] and [9]. 

 Recall the coefficient of potential matrix has elements pij, which gives the potential Vi on 

rectangle i due to a charge Qj placed on rectangle j, is defined as 

 
1

i j

i
ij e j iv v

i j j

Vp G dv dv
v v Q

= =∫ ∫ .   (B.1) 

Because the thickness is very small relative to the surface area, we ignore the thickness of 

rectangles i and j and integrate over the surface, which gives 

  
1

i j
ij e j is s

i j

p G ds ds
s s

= ∫ ∫ .   (B.2) 

From Appendix A we know that Ge is of the form ( ) ( ) ( ); ; ;eG X x x Y y y Z z z′ ′ ′ ′= . Plugging in 

cos mX x
a
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, cos nY y

b
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
 and ( ; ) cos cosm nZ Z z z x y

a b
π π⎛ ⎞ ⎛ ⎞′ ′ ′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, we can re-write Ge 

as 

0 0
cos cos cos cos ( ; )e mn

m n

m n m nG x y x y Z z z
a b a b
π π π π∞ ∞

= =

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′= ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∑∑ . (B.3) 

where ( ; )mnZ z z′  is found from equation (A.30). The set of rectangles i and j and their 

coordinates is given in Figure 31. 
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Figure 31 - Coordinates for rectangles i and j (based on [5]) 
 
Performing the integration from equation Figure 31 on the set of contacts for rectangles i and j 

shown in Figure 31, ignoring the m = n = 0 case, gives  

342 1

2 1 4 3

0 0 342 1

2 1 4 3

sin sinsin sin

sin sinsin sin
ij

m n

mn

aaa a m mm m
a aa a

a a a a
p

bbb b n nn n
b bb b Z

b b b b

π ππ π

π ππ π

∞ ∞

= =

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ −− ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟× ×
− −⎜ ⎟

= ⎜ ⎟
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟−− ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠× ×⎜ ⎟− −⎝ ⎠

∑∑   (B.4) 

The sinusoidal terms in equation (B.4) are then multiplied out and we use the identity shown in 

equation (B.5) to put equation (B.4) into the form of a discrete cosine transform (DCT).  

1sin sin cos cos
2

j i j i ji a a a a aam m m m
a a a a

π π π π
⎛ ⎞− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (B.5) 

As in [5] and [9], this allows us to re-cast equation (B.4) into a sum of 64 terms of the form 

 1,2 3,4 1,2 3,4

0 0
cos cosmn

m n

a a b b
Z m n

a b
π π

∞ ∞

= =

± ±⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ %    (B.6) 

This is of the same form as a 2-D DCT. By inspection of equation (B.6), it is apparent that for 

the case 0, 0m n= ≠ or 0, 0m n≠ = , the form of equation (B.6) becomes the form of a 1-D DCT.  
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 Equation (B.6) is not solvable due to the infinite upper bound on the DCT. To make 

equation (B.6) solvable with a DCT, we need to discretize the substrate in the x and y directions 

and represent the coordinates of the contacts as ratios of integers as in [5] and [9]. 

 ;k k k ka p b q
a P b Q
= =    (B.7) 

 This allows equation (B.6) to be re-written as 
11

1,2 3,4 1,2 3,4

0 0
cos cos

QP

mn
m n

p p q q
Z m n

P Q
π π

−−

= =

± ±⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑ % .   (B.8) 

 The variables a and b in equation (B.7) are the x and y dimensions of the substrate. They 

do not need to be the exact value, just large enough for convergence. The inductors we studied 

are on the order of a few hundred microns in diameter and a=b=1024 um is adequate for 

convergence. The values of P and Q determine the number of iterations over which the infinite 

summations are made, or in other words, the size of the DCT.  

 Equation (B.8) is not exactly a DCT because of the ±  terms in the numerator which have 

an upper limit up to 2P and 2Q. To truly be a DCT, the indices in the numerator of the cosine 

arguments in the DCT must not be greater than the upper limits, P-1 and Q-1 in this case. The 

following properties of symmetry of the DCT allow us to get around this. We define Zpq as 

 
11

0 0
cos cos

QP

pq mn
m n

p qZ Z m n
P Q

π π
−−

= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ %    (B.9) 

 , 2 , ,2 2 ,2p q P p q p Q q P p Q qZ Z Z Z− − − −= = =    (B.10) 

Equation (B.9) is in the exact form of a P by Q DCT. Thus, if the terms 1,2 3,4p p± and 1,2 3,4q q±  

are greater than P-1 or Q-1, respectively, we can flip the values across P and Q using the 

identities in equation (B.10). 

 For the case m = n = 0, the portion of Ge that is a function of x and y drops out because it 

is equal to 1 for m = n = 0. Thus, equation (B.2) becomes 

 00
00

1
i j

ij j is s
i j

p Z ds ds
s s

= ∫ ∫ .   (B.11) 

If we perform this integration, we find that 00
ijp  is simply the Green’s function for m = n = 0 

since the integration over the contacts is in x and y while Z00 is a function of z only.  

 00 00
00( ; ) ( ; )ij ep G z z Z z z′ ′= =    (B.12) 
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To find Z00, we inspect equation (A.18) with tmn = 0. The solution to Z00 is of the form 

 00 ( )u u u
i iZ K C z D= + ,   (B.13) 

where the superscript u indicates z z′ ≥  as in Appendix A. For z z′ ≤ , we have 

 00 ( )l l l
i iZ K C z D′= + .   (B.14) 

As in [10], we find K by integrating equation (A.18) for z z′=  and applying the boundary 

condition that the potential be continuous. Doing this gives 

 ,

1
u l

s i

K
ab Cε

= .   (B.15) 

We choose the superscript u or l in equation (B.15) depending upon the location of z with respect 

to z′  as done previously.  

 To find the values for ,u l
iC  and ,u l

iD  we use a matrix [A] as in equation (A.9), but [A] is 

defined differently for the case m = n = 0. If we apply the boundary conditions of continuous 

potential and continuous n̂ D×
v

 at the interface, as well as 00 (0; ) 0Z z′ =  due to the ground plane 

and ˆ 0n E• =
v

at the top of the substrate, we find [A] as 

 [ ] 1

1

0

1 1

k

k

k
k

k

A
d

ε
ε

ε
ε

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥⎛ ⎞

−⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

   (B.16) 

We are free to set C1 = 1 and we must set D1 = 0 because of the ground plane at z = 0.  Thus 

far, we have defined pij for all values of m and n. To summarize the procedure from [5] and [9], 

the steps for fast computation of [P] are given below. 

 

1. Input the substrate data. This includes the thickness and dielectric constants of 

the dielectric layers of the substrate. 

2. Compute Zmn as outlined in Appendix A and Z00 as outlined in Appendix B.  

3. Compute the DCT of Zmn for all cases of m and n except for m=n=0.  

4. Read in the x and y coordinates of the corners of the rectangles comprising the 

current geometry and compute the equivalent integer representation as given 

by equation (B.7). 
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5. Compute equation (B.4) using equation (B.8). Recall that for m=n=0, use 
00 00

00( ; ) ( ; )ij ep G z z Z z z′ ′= = . 

6. Generate [P] by computing all possible combinations of rectangles. For 

example, if we have an inductor of 20 rectangles, [P] will be 20 x 20. 

7. Steps 1-3 only need to be done for a given substrate. If [P] needs to be 

recomputed for a different geometry, go to step 4.  
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Appendix C: Mutual Inductance Calculation 

 The magnetostatic Green’s function, Gm, is used to calculate the partial inductance matrix 

[M]. We make the assumption that the dielectric substrate under consideration has low loss, 

which leads to, from equation (2.3) 

 2 A Jμ∇ = −
v v

.   (C.1) 

By inverting equation (C.1) and setting J
v

 to be a dirac delta function, we get Gm. Since 0μ μ=  

for all layers, Gm is 

 0

4mG
R

μ
π

= .   (C.2) 

As discussed in Chapter 2, we find Mij from Gm as 

0

4 i i j j

i j
ij i ja l a l

i j i j

dl dl
M da da

a a r r
μ
π

•
=

−∫ ∫ ∫ ∫
v v

v v .  (C.3) 

In this appendix, we will review the techniques of [2],[6], and [7] to solve equation (C.3). 

 We begin with the diagonal terms of [M], also known as the self inductance terms. For a 

rectangle of thickness t, width W, and length L, we get Mii to be 

4 2 ( )( ) 2 10 ( ) ln 0.5
( ) ( )ii

L mM nH L m
W m t m

μμ
μ μ

− ⎛ ⎞⎛ ⎞
= × × × +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

  (C.4) 

The calculation of the off-diagonal terms of [M], also called the mutual inductance terms, is 

more complicated. The calculation of the mutual inductance has two parts: the 4 dimensional 

integral and the dot product.  

 The dot product is quite simple. If the rectangles are oriented in such a way that the 

lengths are perpendicular, then i jdl dl•
v v

 is zero. If the lengths are in parallel or in series, then 

1i jdl dl• =
v v

 for current in the same direction. The dot product 1i jdl dl• = −
v v

 if the current is in the 

opposite direction.  

 The calculation of the 4 dimensional integral is done in one of two ways, depending upon 

the relation of the center-to-center distance D and length of the rectangles L. First, we treat the 

rectangles as filaments with no width and the same length L and separated by a distance d. The 

solution to the integral of equation (C.3) for this case is 



ASCSII-2 contract #F33615-00-D-1726-0002 CDRL #A001 Final Report 
 

 
Approved for public release; distribution is unlimited. 

48 

2 2
42 10 ln 1 1L L d dM L

d d L L
−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟′ = × × × + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
.  (C.5) 

where L and d is in mμ  and M ′ is in nH. If L d>> , we can simplify equation (C.5) to 

 42 10 ln( ) ln(2 ) 1dM L d L
L

− ⎛ ⎞′ = × × × − + −⎜ ⎟
⎝ ⎠

.   (C.6) 

If the width of the rectangles is not negligible, then we use the arithmetic mean distance (AMD) 

for the center to center distance d and the geometric mean distance (GMD) for ln( )d . The AMD 

defined as  
3 3 3 3

2 1 2 1 2 1 2 11
6 2 2 2 2

W W W W W W W WAMD d d d d− + + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (C.7) 

and the GMD is  
2 2

2 1 2 1 2 1

2 2
2 1 2 1 2 1

2 2
2 1 2 1 2 1

3
2 1 2 1

1 3*ln
2 2 2 4 2

1 3*ln
2 2 2 4 2

1 3*ln
2 2 2 4 2

1 3*ln
2 2 2

W W W W W WGMD d d d

W W W W W Wd d d

W W W W W Wd d d

W W W Wd d

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞− − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
2 1

4 2
W Wd −⎛ ⎞−⎜ ⎟

⎝ ⎠

. (C.8) 

W2 and W1 are the widths of the rectangles. Equation (C.6) becomes 

 42 10 ln(2 ) 1AMDM L GMD L
L

− ⎛ ⎞′ = × × × − + −⎜ ⎟
⎝ ⎠

.   (C.9) 

The criteria for deciding when to use the filamental approximation of equation (C.5) or the 

GMD/AMD approximation of equation (C.9) is based upon the size of d in relation to the length 

of the rectangles. If .5d L< , the widths of the rectangles cannot be ignored and we use the 

GMD/AMD approximation. If .5d L> , we use the filamental approximation.  
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 In general, the two rectangles will not be the same size and will sometimes have an 

offset. [2] gives a method for calculating the mutual inductance of two rectangles that are offset 

and not equal in length. There are four different possible orientations for two rectangles of 

arbitrary length and offset. The first is given in Figure 33. 

l

m
d

δ
 

 Figure 32 - Unequal parallel filaments with offset 
 
The mutual inductance M ′ of the rectangles with this configuration is given as 

 ( ) ( )1 1
2 2l m l mM M M M Mδ δ δ δ+ + + +′ = + − + ,   (C.10) 

where the subscripts are the values for L to be used in equation (C.5) and (C.9). Equation (C.10) 

is for the case when the offset is positive, i.e. the filaments do not overlap. If the filaments do 

overlap, then we have 

 ( ) ( )1 1
2 2l m l mM M M M Mδ δ δ δ+ − − −′ = + − + .   (C.11) 

If d and δ go to zero in Figure 32, we get two rectangles in series. For the case when d and δ go 

to zero we use 

 ( ) ( )1 1
2 2l m l mM M M M+′ = − − .   (C.12) 

A variation of Figure 32 is when there is a full overlap of the rectangles as shown in Figure 33.  

l

q
d

m

p

 

Figure 33 - Unequal parallel filaments with full overlap 
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The mutual inductance for the case of Figure 33 is  

 ( ) ( )1 1
2 2m p m q p qM M M M M+ +′ = + − + .   (C.13) 

Lastly, there is the case when both filaments are unequal in length but have no offset as shown in 

Figure 34. 

l

d

m
 

Figure 34 - Unequal parallel filaments with no offset 
 
The mutual inductance for this case is found as 

 ( )1
2 l m l mM M M M −= + − .   (C.14) 
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